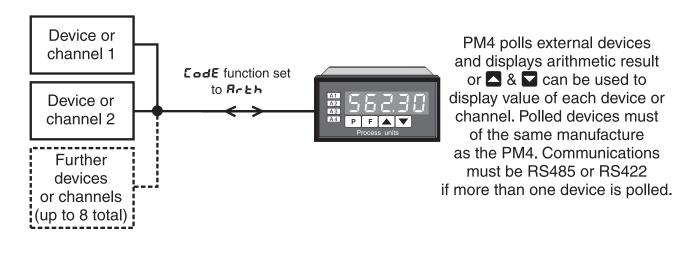
Model PM4-RS and PM4-RSA Serial Input Panel Mount Display/Controller Arthitmetic and Wind Speed/Direction Addendum

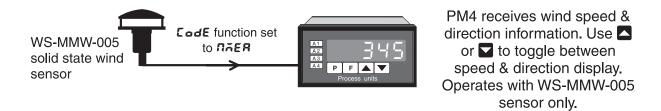
AMALGAMATED INSTRUMENT CO PTY LTDACN: 001 589 439Unit 5, 28 Leighton Place Hornsby
NSW 2077 AustraliaTelephone: +61 2 9476 2244
Facsimile: +61 2 9476 2902e-mail: sales@aicpl.com.au
Internet: www.aicpl.com.au

Table of Contents


1	Introduction	3
2	Electrical installation	4
3	Function tables - Arithmetic mode	9
4	Arithmetic and Wind Speed/Direction mode functions	16
5	Arithmetic function examples	52
6	Function table - Wind Speed and Direction mode	53
7	Wind speed and direction NMEA mode	57

1 Introduction

This addendum to the PM4-RS manual contains information for the installation and operation using the arithmetic mode **RFEH** or the wind monitor mode **RFER**. Refer to the main PM4-RS and PM4-RSA manual for any details not covered in this addendum.


The PM4 will accept inputs from RS232, RS485, RS422 or serial current loop inputs (factory configured). The two modes covered by this addendum are detailed below. If the mode is changed it is necessary to remove power from the PM4 then reapply power in order to reset the mode.

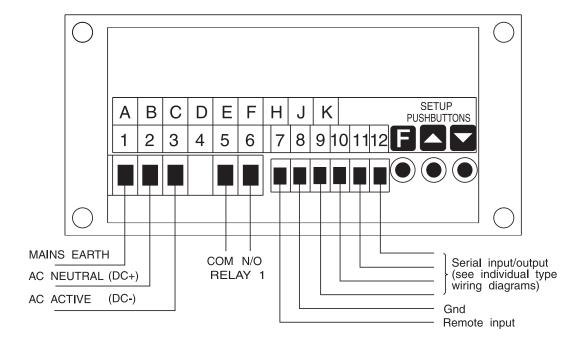
Arithmetic mode. The instrument can be programmed to accept input from up to eight RS485 or RS422 sources and combine these arithmetically. The time between polling requests is programmable from 0.0 to 20.0 seconds. The instruments polled for arithmetic operation must be of the same manufacture as the PM4 instrument. To operate in this mode the **COdE** function must be set to **RFEh**.

Wind speed and direction (NMEA). This mode is used only with instruments using NMEA (National Marine Electronics Association) serial code such as model WS-MMW-005 wind speed and direction sensor. To operate in this mode the **COde** function must be set to **REE**.

The display can be set to display wind speed, wind direction or to toggle (using \square or \square button) or automatically alternate the display between wind speed and direction. Analog retransmission output options can be selected to transmit wind direction ($\square \square \square$) or wind speed ($\square \square \square$) at the $\square \square \square$ function (also at the $\square \square \square \square \square$ function if dual analog output is used.) Similarly $\square \square \square \square \square \square \square$ can be selected for the alarm relays at the $\square \square \square \square \square \square$ etc. functions.

2 Electrical installation

2.1 Electrical installation

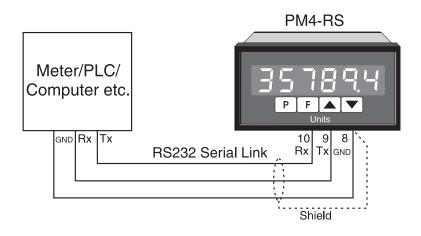

The PM4 Panel Meter is designed for continuous operation and no power switch is fitted to the unit. It is recommended that an external switch and fuse be provided to allow the unit to be removed for servicing.

The plug in, screw type, terminal blocks allow for wires of up to 2.5mm² to be fitted. Connect the wires to the appropriate terminals as indicated below. Refer to connection details provided in this chapter to confirm proper selection of voltage, polarity and input type before applying power to the instrument.

When power is applied the instrument will cycle through a display sequence indicating the software version and other status information, this indicates that the instrument is functioning. Acknowl-edgement of correct operation may be obtained by applying an appropriate input to the instrument and observing the reading.

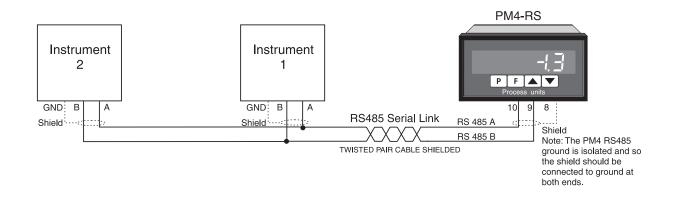
For connection details of optional outputs refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when options are fitted.

Use twin shielded wire for RS232 connection and twisted pair shielded wire for RS485 and RS422.

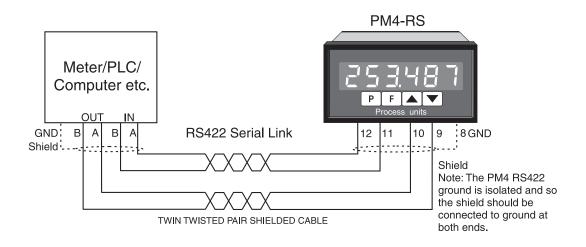

Instrument rear view

		_	440
1 2 3	MAINS EARTH 240 VAC NEUTRAL 240 VAC ACTIVE		
5 6 7	RELAY 1 RELAY 1 REMOTE INPUT	COM N/O	
8 9 10	GROUND RS232 RS232	TX RX	
11 12			
	PM4-232-240-5E		SERIAL No.: XXXXX-XXX

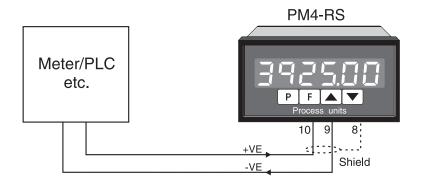
Instrument data label example


2.2 RS232 connections

Use 3 core shielded cable for RS232 connections. RS232 connections generally have Rx at the PM4-RS connected to Tx at the PLC/Computer etc. and Tx at the PM4-RS connected to Rx at the PLC/Computer etc. RS232 connections are usually rated to a maximum cable length of approximately 15 metres and are single ended in operation i.e. only one device can be connected to the PM4-RS.


2.3 RS485 connections

RS485 connections use shielded, twisted pair wires. RS485 is rated to a maximum cable length of approximately 1200 metres and will allow connection of up to 32 drivers or receivers on the serial link. For cable runs of longer than a few metres terminating resistors may be required across the A and B terminals. The PM4-RS has an internal link (LK3) which can be used to switch in or out of circuit a 150 Ω terminating resistor. For units without internal terminating resistors an external resistor of 150 Ω (nominal) may be fitted. The terminating resistors are only required at the first and last units on the link.

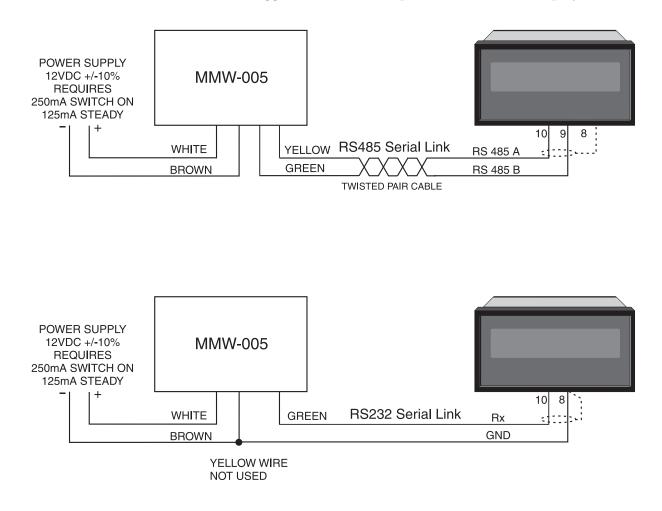

2.4 RS422 connections

RS422 connections use twin twisted pair, overall screened cable. RS422 is rated to a maximum cable length of approximately 1200 metres and will allow connection of 1 driver and up to 10 receivers on the serial link. Internal terminating resistors for RS422 can be fitted via links LK3 and LK4, see RS485 section above for notes on terminating links.

2.5 Serial current loop connections

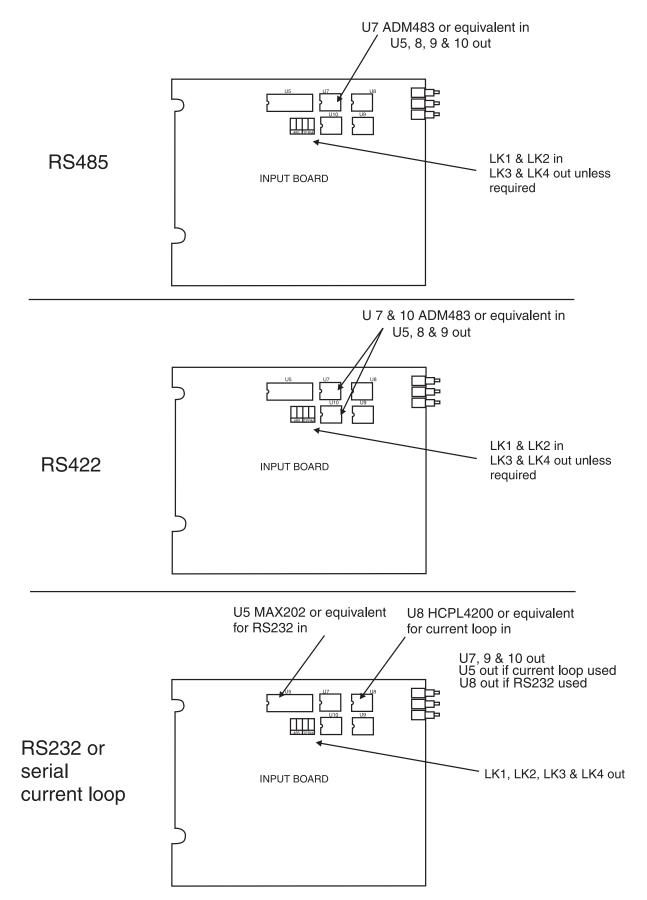
Serial (i.e. pulsed) 20mA current loop connections are as shown below.

2.6 Relay connections


Relay connections The PM4 is supplied with one alarm relay as standard with connections on terminals 5 and 6, extra relays are optionally available. The relay is a single pole, single throw type and is rated at 5A, 240VAC into a resistive load. The relay contact is voltage free and may be programmed for normally open or normally closed operation.

2.7 Ext In (Remote input) connections

To operate the remote input connect a voltage free switch or relay across terminals 7 and 8. The function selected at the f: ΠP function will operate when the switch is closed. Choose a momentary or latching switch to suit the application selected.


2.8 Wiring to WS-MMW-005 wind speed and direction sensor

WS-MMW-005 wind speed/direction sensor - connections to PM4-RS Note: Sensor can be connected as RS232 or RS485, baud rate 4800, Parity none, 8 bit data, **CodE** function set to **REE**. The **△** or **○** button can be used to toggle between wind speed and direction display.

2.9 Link and driver chip connections

The driver chips are factory installed for the configuration ordered.

3 Function tables - Arithmetic mode

Note: the order in which the functions appear on the display may not be exactly as shown below. The availability and order of functions is determined by choice of function settings and options fitted.

Display	Function	Range	Default	Your record	Ref/Page
AxLo	Low setpoint value for designated alarm relay x	Any display value or DFF	OFF	See 6.1	4.1 / 18
Я <i>х</i> н,	High setpoint value for designated alarm relay x	Any display value or DFF	OFF	See 6.1	4.2 / 18
\mathbf{R}_{x} Hy	Hysteresis value for the designated alarm relay x .	0 to 9999	10	See 6.1	4.3 / 19
Axtt	Trip time delay for the designated alarm relay x .	0 to 9999	0	See 6.1	4.4 / 20
8xrt	Reset time delay for the designated alarm relay x .	0 to 9999	0	See 6.1	4.5 / 20
Яхп.е or Яхп.с	Alarm relay x action to normally open (de-energised) or normally closed (energised)	Rxn.o or Rxn.c	8xn.o	See 6.1	4.6 / 20
A x 5P or A x E 1 etc.	Relay operation independent setpoint or trailing setpoint (* Optional)	RxSP or RxE fetc.	Rx5P	See 6.1	4.7 / 21
br 9t	Display brightness level	1 to 15	15		4.8 / 21
dull	Display remote brightness switching	0 to 15	1		4.9 / 21

Functions in this first table are available in **FUNE** or **ERL** mode

(***Optional**)—this function will only be accessible if the relevant option is fitted

Display	Function	Range	Default	Your record	Ref/Page
bAr_	Bargraph low value	Any display value	0		4.10 / 22
68r -	Bargraph high value	Any display value	1000		4.11 / 22
ьяг Еуре	Bargraph type for instruments with bargraph display	bAr, 5.dot, d.dot, С.bAГ or r.dot	68r		4.12 / 22

Functions in this second table are available only in **CRL** mode or if **REES** is set to **RLL**

 $(^{*}Optional)$ —this function will only be accessible if the relevant option is fitted

ьяг Сняп	Bargraph channel	0 to 8	0	4.13 / 23
LEC-	Analog output option low display value (* Optional)	Any display value	0	4.14 / 24
LEC-	Analog output option high display value (* Optional)	Any display value	1000	4.15 / 24
rEC	Analog output 1 channel (* Optional)	chO to ch8	ch0	4.16 / 24
ΓΕC_ [h2	Second analog output option low display value (* Optional)	Any display value	٥	4.17 / 25
ГЕС- Сњ2	Second analog output option high display value (* Optional)	Any display value	1000	4.18 / 25
rE[2	Analog output 2 channel (* Optional)	ch0 to ch8	ch0	4.19 / 25
drnd	Display rounding	; to 5000	1	4.20 / 25
d[PE	Decimal point	0 , 0. ! etc.	0	4.21 / 26
FLEr	Digital filter	0 to 8	2	4.22 / 26
ЯЕРН Сн	Number of active channels for Rrth mode	(to 8	ч	4.48 / 35
[h Rddr	Channel 1 address	P	P (4.49 / 36
[h2 Rddr	Channel 2 address	P 1 to P8 or 5 1 to 58 or E 1 to E8	P 1	4.50 / 36
[h] Rddr	Channel 3 address	P 1 to P8 or 5 1 to 58 or E 1 to E8	P (4.51 / 36
[h4 Rddr	Channel 4 address	P	P 1	4.52 / 36
[hS Rddr	Channel 5 address	P 1 to P8 or P 1 5 1 to 58 or		4.53 / 37
[h6 Rddr	Channel 6 address	P	P 1	4.54 / 37
[h] Addr	Channel 7 address	P 1 to P8 or 5 1 to 58 or E 1 to E8	P (4.55 / 37

 $({}^{*}\mathbf{Optional}) - \!\!\!\!- \!\!\!\!$ this function will only be accessible if the relevant option is fitted

[h8 Addr	Channel 8 address	P # to P8 or 5 # to 58 or L # to L8	P (4.56 / 37
[ћ d[ре	Channel 1 decimal point	0 , 0 . 1 etc.	0	4.57 / 37
CH2 4CPE	Channel 2 decimal point	0 , 0 . 1 etc.	0	4.58 / 38
[h] d[pe	Channel 3 decimal point	0 , 0 . 1 etc.	0	4.59 / 38
[ћ4 d[ре	Channel 4 decimal point	0 , 0 . 1 etc.	0	4.60 / 38
ChS dCPt	Channel 5 decimal point	0 , 0 . 1 etc.	0	4.61 / 38
Ch6 dCP£	Channel 6 decimal point	0 , 0 . 1 etc.	0	4.62 / 38
527 652	Channel 7 decimal point	0 , 0 . 1 etc.	0	4.63 / 39
Ch8 dCPt	Channel 8 decimal point	0 , 0 . 1 etc.	0	4.64 / 39
ER (ER : value for arithmetic formula	- 32727 to 5767	1	4.65 / 39
ЕЬ 1	Eb <i>i</i> value for arithmetic formula	- 32 72 7 to 7 7 7 5 5	0	4.66 / 40
ECS	EC2 value for arithmetic formula	-32727 to 52767	1	4.70 / 40
E85	ER2 value for arithmetic formula	- דבר to רפר בנ	1	4.68 / 40
EP5	Eb2 value for arithmetic formula	- דבר to רפר בנ	0	4.69 / 40
ECS	EC2 value for arithmetic formula	- 32727 to 5767	1	4.70 / 40
ER3	ER3 value for arithmetic formula	- דבר to רפר בנ	1	4.71 / 41
ЕЬЗ	Eb3 value for arithmetic formula	- דבר לי ד אר שר לי ד אר שר אוני	0	4.72 / 41
EC3	EC3 value for arithmetic formula	- ז ר בר בנ ד מר בנ בר מר בנ	1	4.73 / 41
ЕЯЧ	ERY value for arithmetic formula	- דבר בני דםר בני דםר בני	1	4.74 / 41
ЕЬЧ	EbY value for arithmetic formula	-32727 to 32767	0	4.75 / 41

 $({}^{*}\mathbf{Optional}) - \!\!\!- \!\!\!- \!\!\!$ this function will only be accessible if the relevant option is fitted

ECY	EC value for arithmetic formula	to רפר 32 רפר 32	1	4.76 / 42
ERS	ERS value for arithmetic formula	to - 32 - 32 - 32 - 5 רפר 32	1	4.77 / 42
ЕЬ5	Eb5 value for arithmetic formula	to רבר 22- רפר 22	٥	4.78 / 42
805	ECS value for arithmetic formula	to רבר 22- רפר 22	1	4.79 / 42
E A E	ERB value for arithmetic formula	to רבר 22- רפר 22	1	4.80 / 42
ЕРЕ	Eb5 value for arithmetic formula	to רבר 22- רפר 22	٥	4.81 / 43
828	ECB value for arithmetic formula	to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	4.82 / 43
ERJ	ER7 value for arithmetic formula	- 32 72 7 to 7 7 57 55	1	4.83 / 43
ЕРЈ	Eb ، value for arithmetic formula	- 32727 to 32767	٥	4.84 / 43
בבז	EC ٦ value for arithmetic formula	to רבר 22- רפר 22	1	4.85 / 43
ERB	ERB value for arithmetic formula	to רבר 22- רפר 22	1	4.86 / 44
ЕРВ	Eb8 value for arithmetic formula	to רבר 22- רפר 22	٥	4.87 / 44
EC 8	ECB value for arithmetic formula	to רבר 22- רפר 22	1	4.88 / 44
Eh 1	Channel 1 polarity	both, POS or NES	both	4.89 / 44
243	Channel 2 polarity	both, POS or NES	both	4.90 / 45
Ch3	Channel 3 polarity	both, POS or NES	both	4.91 / 45
באץ	Channel 4 polarity	both, POS or NES	both	4.92 / 45
[hS	Channel 5 polarity	both, POS or NES	both	4.93 / 45
Ch6	Channel 6 polarity	both, POS or NES	both	4.94 / 45
[27]	Channel 7 polarity	both, POS or NES	both	4.95 / 46

 $({}^{*}\mathbf{Optional})$ —this function will only be accessible if the relevant option is fitted

C h 8	Channel 8 polarity	ьо£ћ, РО5 or ЛЕЗ	both	4.96 / 46
OP 1	Arithmetic operation between channels 1 and 2	Rdd, Sub, Prod, d. U, H. 9h, Lo, SI NE, COS or C.SUb	Rdd	4.97 / 46
OP2	Arithmetic operation between channel 3 and previous operation	Rdd, Sub, Prod, d, U, H, 9h, Lo, SI NE or COS	Rdd	4.98 / 47
OP3	Arithmetic operation between channel 4 and previous operation	Rdd, Sub, Prod, d. U, H. Sh, Lo, SI NE or EOS		4.99 / 47
OP4	Arithmetic operation between channel 5 and previous operation	Add, Sub, Prod, d. U, H. 9h, Lo, SI NE or COS	Rdd	4.100 / 48
OPS	Arithmetic operation between channel 6 and previous operation	Rdd, Sub, Prod, d. U, H. 9h, Lo, SI NE or COS	Rdd	4.101 / 48
0P6	Arithmetic operation between channel 7 and previous operation	Add, Sub, Prod, d. U, H. 9h, Lo, SI NE or COS	Rdd	4.102 / 49
רפס	Arithmetic operation between channel 8 and previous operation	Rdd, Sub, Prod, d. U, H. 9h, Lo, S: NE or COS	Rdd	4.103 / 49
FAFE Lafe	Baud rate for serial communications	300.600. 1200.2400. 4800.9600. 19.2 or 38.4	9600	4.26 / 27
Prty	Parity for serial input	none.euen or Odd	ΠΟΠΕ	4.27 / 27
98F8	Data type	8.6, £ or 7.6, £	8.6, E	4.28 / 27
I NPE	Input type	F232, F422, F485 or F20	r 232	4.29 / 28

(***Optional**)—this function will only be accessible if the relevant option is fitted

CodE	Data type for display	di SP, ASCI , URL, AFEH, Ā.65, PEA, SCAN, NĂEA or CS	d) SP	4.30 / 28
R I OPEC	Alarm relay 1 operation mode	I NPE, E.out or both	I NPE	4.31 / 30
R2 OPEC	Alarm relay 2 operation mode	I ΠΡΈ, Έ.ουξ or both	I NPE	4.32 / 30
d5.20	Display timeout	0 to 9999	10	4.33 / 30
t.out	Data string timeout	0.0 to <i>1</i> 0.0	1.0	4.34 / 31
F85£ ~ 485	Fast RS485	on or OFF	OFF	4.35 / 31
490P	Digital output option mode (* Optional)	mode bcd, b.5CL, b. n2 b. n or b. n2		4.36 / 31
d9.0P	Digital output option polarity (* Optional)	A; o or AH ,	Ri o	4.37 / 31
bcd Strt	0 1 1		0	4.38 / 32
d, 9_	Digital output option low value (* Optional)	Any display 2 value		4.39 / 32
d, 9-	Digital output option high value (* Optional)	Any display value	1000	4.40 / 32
dout [HAN	Digital output option channel (* Optional)	ch0 to ch8	ch0	4.41 / 32
P.but	P button function	NONE.H Lo.HI Lo. ERFE or 2EFO	NONE	4.42 / 33
Г.І ПР	Remote input (external input) one function	NDNE, P.HLd, d.HLd,H, Lo,H,Lo, ERFE,2EFD, SP.Rc,No.Rc or duLL	ΠΟΠΕ	4.43 / 33
ACCS	Access mode	OFF.ERSY. NONE or ALL	OFF	4.44 / 34
SPAC	Setpoint access mode (* Optional)	A 1.A 1-2 etc.	R (4.45 / 34
R (Alarm relay 1 operation channel	chO to chB	ch0	4.46 / 35

 $({}^{*}\mathbf{Optional}) - \mathrm{this}$ function will only be accessible if the relevant option is fitted

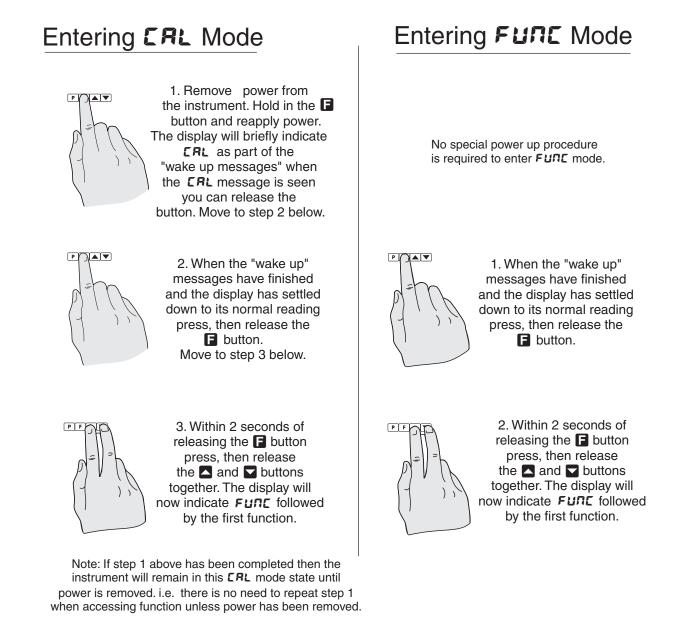
אצ to רא	Alarm relays 2 to 7 operation channel (*Optional)	ch0 to ch8	c hO	4.47 / 35
CLr ZEFO	Clear zero	n/a	n/a	4.104 / 50
F.tro 68Ud	Baud rate for serial retransmission (* Optional)	300, 600, 1200, 2400, 4800, 9600, 19.2 or 38.4	9600	4.105 / 50
F.trn Prty	Parity for serial retransmission (* Optional)	NONE, EUEN or Odd	ΠΟΠΕ	4.106 / 51
F.tro O.Put	Output mode for serial retransmission (* Optional)	NONE, dl SP, Cont, POLL, Cont, A.buS or R.buS	ΠΟΠΕ	4.107 / 51
F.trn Rddr	Address for serial retransmission (* Optional)	0 to 3 (0	4.108 / 51

 $({}^{*}\mathbf{Optional}) - \mathrm{this}$ function will only be accessible if the relevant option is fitted

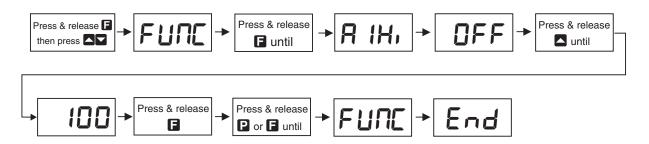
3.1 Relay table

Record your relay settings in the table below

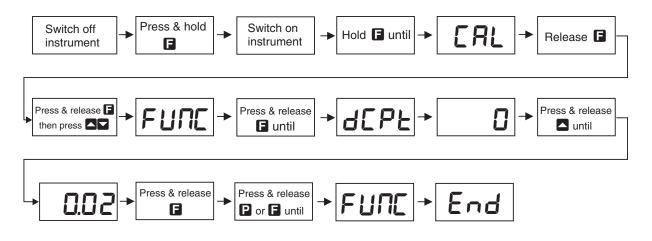
Display	Relay 1	Relay 2	Relay 3	Relay 4	Relay 5	Relay 6	Relay 7
AxLo							
Я <i>х</i> н ,							
R <i>x</i> hy							
Axtt							
Axrt							
Rxn.o or Rxn.c							
A x SP or A x E ! etc.	n/a						
R (
82							
83							
84							
85							
86							
87							


4 Arithmetic and Wind Speed/Direction mode functions

Some of the functions described in this chapter are common to both **RFLH** and **RAER** modes, others will only appear in one mode, check the function tables for each mode to confirm which functions apply. The PM4 setup and calibration functions are configured through a push button sequence. The three push buttons located at the rear of the instrument (also at the front on some display options) are used to alter settings. Two basic access modes are available:


FUNC mode (simple push button sequence) allows access to commonly set up functions such as alarm setpoints.

CRL mode (power up sequence plus push button sequence) allows access to all functions including calibration parameters.


Once **CRL** or **FUNC** mode has been entered you can step through the functions, by pressing and releasing the **G** push button, until the required function is reached. Changes to functions are made by pressing the or push button (in some cases both simultaneously) when the required function is reached. See the flow chart example on the following page.

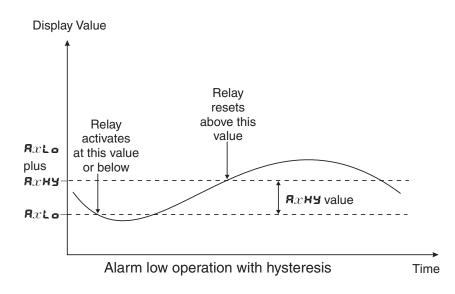
Example: Entering FURC mode to change alarm 1 high function **R** IH, from **OFF** to 100

Example: Entering **CRL** mode to change decimal point function **dCPL** from **O** to **O.O2**

Easy alarm relay adjustment access facility

The display has an easy alarm access facility which allows access to the alarm setpoints simply by pressing the \square button at the front or rear of the instrument. The first setpoint will then appear and changes to this setpoint may be made to this setpoint via the \square or \square buttons. Press the \square button to accept any changes or to move on to the next setpoint. Note: this easy access also functions in the same manner for the PI control setpoint (relay and/or analog PI output) if PI control is available. The instrument must be set in the manner described below to allow the easy access facility to work:

- 1. The **F.**; **AP** function must be set to **SPRE** or the **REES** function must be set to **ERSY**.
- 2. At least one alarm must have a setpoint, nothing will happen if all the alarm setpoints are set to OFF.
- 3. The **SPRC** function must be set to allow access to the relays required e.g. if set to **R**:-**2** then the easy access will work only with alarm relays 1 and 2 even if more relays are fitted.
- 4. The instrument must be in normal measure mode i.e. if the instrument is powered up so that it is in **CRL** mode then the easy access will not function. If in doubt remove power from the instrument, wait for a few seconds then apply power again.
- 5. If the easy access facility is used then the only way to view or alter any other function settings is to power up via **ERL** mode i.e. there is no entry to **FURE** mode functions unless the instrument is powered up in **ERL** mode.

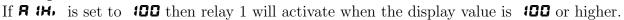

4.1 Alarm relay low setpoint

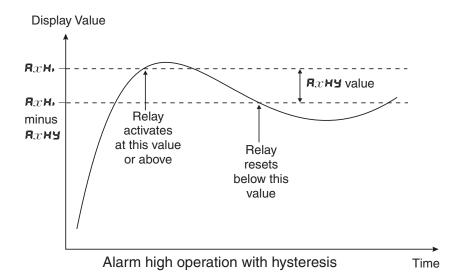
Display:	R xLo
Range:	Any display value or \pmb{OFF}
Default Value:	OFF

Displays and sets the low setpoint value for the designated alarm relay x. Note x will be replaced by the relay number when displayed e.g. **R !Lo** for relay 1. Use this low setpoint function if a relay operation is required when the display value becomes equal to or less than the low setpoint value. To set a low alarm value go to the **R**x**Lo** function and use the **D** or **D** push buttons to set the value required then press **D** to accept this value. The low alarm setpoint may be disabled by pressing the **D** and **D** push buttons simultaneously. When the alarm is disabled the display will indicate **DFF**. If the relay is allocated both a low and high setpoint then the relay will activate when the value displayed moves outside the band set by the low and high setpoints. The value at which the relay will reset is controlled by the **R**x**H** \mathbf{Y} function.

Example:

If **R !Lo** is set to **!D** then relay 1 will activate when the display value is 10 or less.




4.2 Alarm relay high setpoint

Display: $\mathbf{R}_x \mathbf{H}_r$ Range:Any display value or \mathbf{OFF} Default Value: \mathbf{OFF}

Displays and sets the high setpoint value for the designated alarm relay x. Note x will be replaced by the relay number when displayed e.g. **R iH**, for relay 1. Use this high setpoint function if a relay operation is required when the display value becomes equal to or more than the low setpoint value. To set a high alarm value go to the **R**x**H**, function and use the \square or \square push buttons to set the value required then press \square to accept this value. The high alarm setpoint may be disabled by pressing the \square and \square push buttons simultaneously. When the alarm is disabled the display will indicate $\square FF$. If the relay is allocated both a low and high setpoint then the relay will activate when the value displayed moves outside the band set by the low and high setpoints. The value at which the relay will reset is controlled by the **R**x**H** \exists function.

Example:

4.3 Alarm relay hysteresis (deadband)

 Display:
 R*x***HY**

 Range:
 D to **9999**

 Default Value:
 D

Displays and sets the alarm relay hysteresis limit for the designated relay x. Note x will be replaced by the relay number when displayed e.g. **R IHY** for relay 1. To set a relay hysteresis value go to the **R**x**HY** function and use the \square or \square push buttons to set the value required then press \square to accept this value. The hysteresis value is common to both high and low setpoint values. The hysteresis value may be used to prevent too frequent operation of the relay when the measured value is rising and falling around setpoint value. e.g. if **R IHY** is set to zero the alarm will activate when the display value reaches the alarm setpoint (for high alarm) and will reset when the display value falls below the setpoint, this can result in repeated on/off switching of the relay at around the setpoint value.

The hysteresis setting operates as follows: In the high alarm mode, once the alarm is activated the input must fall below the setpoint value minus the hysteresis value to reset the alarm. e.g. if **R iH**, is to **SO.O** and **R iHY** is set to **3.O** then the setpoint output relay will activate once the display value goes to **SO.O** or above and will reset when the display value goes below **47.O** i.e. at **46.9** or below. In the low alarm mode, once the alarm. e.g. if **R iLo** is to **20.0** and **R iHY** is set to reset the alarm. e.g. if **R iLo** is to **20.0** and **R iHY** is set to **iB** and **k iHY** is set to reset the alarm. e.g. if **R iLo** is to **20.0** and **R iHY** is set to **iB** and **k iHY** is set to **iB** and **k iHY** and **k iHY** is set to **iB** and **k iHY** and **k iHY** is set to **iB** and **k iB** and **b** and **b**

Example: If **R** *i***H**, is set to *i***O** and **R** *i***HY** is set to *i***O** then relay 1 will activate when the display value is *i***O** or higher and will reset at a display value of **B9** or lower.

4.4 Alarm relay trip time

Display:	RxEE
Range:	0 to 9999
Default Value:	0

Displays and sets the alarm trip time in seconds. The trip time is common for both alarm high and low setpoint values. The trip time provides a time delay before the alarm relay will activate when an alarm condition is present. The alarm condition must be present continuously for the whole trip time period before the alarm will activate. If the input moves out of alarm condition during this period the timer will reset and the full time delay will be restored. This trip time delay is useful for preventing an alarm trip due to short non critical deviations from setpoint. The trip time is selectable over Ω to 99999 seconds. To set a trip time value go to the $Rx \models E$ function and use the \square or \square push buttons to set the value required then press \square to accept this value.

Example: If **R !***E* is set to **5** seconds then the display must indicate an alarm value for a full 5 seconds before relay 1 will activate.

4.5 Alarm relay reset time

 Display:
 Rxrt

 Range:
 D to 9999

 Default Value:
 D

Displays and sets the alarm reset delay time in seconds. The reset time is common for both alarm high and low setpoint values. With the alarm condition is removed the alarm relay will stay in its alarm condition for the time selected as the reset time. If the input moves back into alarm condition during this period the timer will reset and the full time delay will be restored. The reset time is selectable over \Box to \P and \P seconds. To set a reset time value go to the $\Re x r E$ function and use the \square or \square push buttons to set the value required then press \square to accept this value.

Example: If **R** : **L** is set to **ID** seconds then the resetting of alarm relay 1 will be delayed by 10 seconds.

4.6 Alarm relay normally open/closed

Display:	Rxn.o or Rxn.c
Range:	Rxn.o or Rxn.c
Default Value:	Axn.o

Displays and sets the setpoint alarm relay x action to normally open (de-energised) or normally closed (energised), when no alarm condition is present. Since the relay will always open when power is removed a normally closed alarm is often used to provide a power failure alarm indication. To set the alarm relay for normally open or closed go to the Rx n. o or Rx n. c function and use the \square or \square push buttons to set the required operation then press \square to accept this selection. Example: If set to R : n. o alarm relay 1 will be open circuit when the display is outside alarm condition and will be closed (short circuit across terminals) when the display is in alarm condition.

4.7 Alarm relay setpoint or trailing operation

Display:	A x SP or A x E ! etc.
Range:	Ax SP or Ax E + etc.
Default Value:	R xSP

Relay operation independent setpoint or trailing setpoint, this function will not be seen unless extra optional relays are fitted. Each alarm, except relay 1, may be programmed to operate with an independent setpoint value or may be linked to operate at a fixed difference to another relay setpoint, known as trailing operation. The operation is as follows:

Alarm 1 (**R**:) is always independent. Alarm 2 (**R**2) may be independent or may be linked to Alarm 1. Alarm 3 (**R**3) may be independent or may be linked to Alarm 1 or Alarm 2. Alarm 4 (**R**4) may be independent or may be linked to Alarm 1, Alarm 2 or Alarm 3. The operation of each alarm is selectable by selecting, for example, (Alarm 4) **R**4.5**P** = Alarm 4 normal setpoint or **R**4.£ : = Alarm 4 trailing Alarm 1 or **R**4.£2 = Alarm 4 trailing Alarm 2 or **R**4.£3 = Alarm 4 trailing Alarm 3. For trailing set points the setpoint value is entered as the difference from the setpoint being trailed. If the trailing setpoint is to operate ahead of the prime setpoint then the value is entered as a positive number and if operating behind the prime setpoint then the value is entered as a negative number.

Example: With Alarm 2 set to trail alarm 1, if **\mathbf{R}** \mathbf{H} , is set to $\mathbf{1000}$ and $\mathbf{R2H}$, is set to $\mathbf{50}$ then Alarm 1 will activate at $\mathbf{1000}$ and alarm 2 will activate at $\mathbf{1050}$ (i.e. 1000 + 50). If Alarm 2 had been set at $\mathbf{-50}$ then alarm 2 would activate at $\mathbf{950}$ (i.e. 1000 - 50).

4.8 Display brightness

Display:	br9	F
Range:	f to	15
Default Value:	<i>i</i> 5	

Displays and sets the digital display brightness. The display brightness is selectable from : to :**5**, where : = lowest intensity and :**5** = highest intensity. This function is useful for improving the display readability in dark areas or to reduce the power consumption of the instrument. See also the **dull** function. To set brightness level go to the **br9t** function and use the **D** or **D** push buttons to set the value required then press **D** to accept this value.

4.9 Display remote brightness switching

Display:	duli	L
Range:	D to	15
Default Value:	1	

Displays and sets the level for remote input brightness switching, see Γ .: ΠP function. When a remote input is set to **dull** the remote input can be used to switch between the display brightness level set by the **b** Γ **9** ϵ function 4.8 and the display brightness set by the **dull** function. The display dull level is selectable from **0** to **15**, where **0** = lowest intensity and **15** = highest intensity. This function is useful in reducing glare when the display needs to be viewed in both light and dark

ambient light levels. To set dull level go to the **dull** function and use the \square or \square push buttons to set the value required then press \square to accept this value.

Example:

With d_{ULL} set to \forall and $b_{r} \Im E$ set to $i\Im$ and the Γ . $i \Pi P$ function set to d_{ULL} the display brightness will change from the $i\Im$ level to \forall when a switch connected to the remote input terminals is activated.

4.10 Bargraph low value

Display:**bRr**Range:Any display valueDefault Value:**C**

Seen only in bargraph display instruments. Displays and sets the bar graph low value i.e. the value on the 7 segment display at which the bargraph will start to rise. This may be independently set anywhere within the display range of the instrument. Note: The **b**Rr and **b**Rr settings are referenced from the 7 segment display readings, not the bargraph scale values. The bargraph scale may scaled differently to the 7 segment display. For example the bargraph scale may be indicating percentage fill of a tank whilst the 7 segment display is indicating actual process units. To set bargraph low level go to the **b**Rr function and use the \Box or \Box push buttons to set the value required then press \Box to accept this value.

4.11 Bargraph high value

Display:	bRr ⁻
Range:	Any display value
Default Value:	1000

Seen only in bargraph display instruments. Displays and sets the bar graph high value i.e. the value on the 7 segment display at which the bargraph will reach its maximum indication (e.g. all LEDs illuminated). May be independently set anywhere within the display range of the instrument. To set bargraph high level go to the **b**Rr function and use the **\Box** or **\Dox** push buttons to set the value required then press **\Dox** to accept this value.

4.12 Bargraph type for instruments with bargraph display

Display:	6Rr ESPE
Range:	bRr, S.dot, d.dot, C.bRF or r.dot
Default Value:	68r

Bar graph display operation mode - seen only in vertical or circular bargraph display instruments. Allows selection of bargraph operation mode. Choices available are:

• **b** R_r - conventional solid bargraph display i.e. all LEDs illuminated when at full scale. When scaling the display use the **b** R_r - and **b** R_r - functions e.g. **b** R_r - **D** and **b** R_r = **D**

100 will give a bargraph with no segments lit at a 7 segment display reading of **0** and all segments lit with a 7 segment display reading of **100**.

- 5.dot single dot display. A single segment will be lit to indicate the input readings position on the scale. When scaling the display use the bRr and bRr functions e.g. bRr = 0 and bRr = 100 will give a bargraph with the bottom segment lit at a 7 segment display reading of 0 and the top segment lit with a 7 segment display reading of 100. Note: this could also be set up as a centre zero single dot display by entering a negative value and positive value. e.g. bRr = 100, bRr = 100.
- **d.dok** double dot display. Two segments will be lit to indicate the input reading position on the scale. The reading should be taken from the middle of the two segments. When scaling the display use the **b** Rr_- and **b** Rr_- functions e.g. **b** $Rr_- = 0$ and **b** $Rr_- = 100$ will give a bargraph with the bottom two segments lit at a 7 segment display reading of 0 and the top two segments lit with a 7 segment display reading of 100. Note: this could also be set up as a centre zero double dot display by entering a negative value and positive value. e.g. **b** $Rr_- = -100$, **b** $Rr_- = 100$.
- **C.bRr** centre bar display. The display will be a solid bargraph but will have its zero point in the middle of the display. If the seven segment display value is positive the bargraph will rise. If the seven segment display value is negative then the bargraph will fall. When scaling the display use the **bRr** and **bRr** functions e.g. **bRr** = **0** and **bRr** = **100** will give a bargraph with all the bottom half segments lit at a 7 segment display reading of **-100** and all the top segments lit with a 7 segment display reading of **100**.
- r.dot modulus or wrap around single dot bargraph. This mode of operation allows the bargraph to wrap around the limits set by the bAr and bAr functions by dividing the 7 segment display by the modulus (the modulus is the difference between 0 and bAr) and displaying the remainder. For example if bAr is set to 0 and bAr is set to 10 then in other bargaph modes when the 7 segment display reads a value such as 25 the bargraph would be stuck at the high limit of its travel since it cannot go beyond 10. In r.dot mode the display will wrap around at 10 then continue up the bar again and will be at the midpoint of the bargraph when the 7 segment display shows 25 (as it would for a 7 segment display of 15, 35, etc.). In this example for a 7 segment display of 25 the value of 10 in this example and the remainder displayed i.e. 10 goes into 25 twice with the remainder of 5 and so a bargaph position of 5 is displayed. This mode will operate on both vertical and circular bargraph type displays.

4.13 Bargraph channel

Display:	68r (X80
Range:	0 to 8

Default Value: **2**

Bargraph channel - for multiple input value modes e.g. **RFEH** mode, this function allows selection of which of the inputs will be sent to the bargraph for display. The first input will be displayed by the 7 segment display. For **REER** mode channel is the wind direction and channel 2 is the wind speed.

4.14 Analog output option low value

Display:	FEC_
Range:	Any display value
	_

Default Value:

Seen only when analog retransmission option fitted. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted for wiring details and link settings. Displays and sets the analog retransmission (4–20mA, 0–1V or 0–10V, link selectable) output low value (4mA or 0V) in displayed engineering units. To set the analog output low value go to the $\Gamma E \Sigma$ – function and use the \square or \square push buttons to set the required value then press to accept this selection.

Example:

If it is required to retransmit 4mA when the display indicates \square then select \square in this function using the \square or \square button.

4.15 Analog output option high value

Display:**FEC**Range:Any display valueDefault Value:1000

Seen only when analog retransmission option fitted. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted for wiring details and link settings. Displays and sets the analog retransmission (4–20mA, 0–1V or 0–10V, link selectable) output high display value (20mA, 1V or 10V) in displayed engineering units. To set the analog output high value go to the $\Gamma E \Gamma$ function and use the \square or \square push buttons to set the required value then press \square to accept this selection.

Example:

If it is required to retransmit 20mA when the display indicates **50** then select **50** in this function using the \square or \square button.

4.16 Analog output 1 channel

Display:	r E C
Range:	chO to ch8
Default Value:	ch0

Seen only when analog retransmission option fitted. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted for wiring details and link settings. Analog output 1 channel. Select from **ch0** to **ch8**. In **DAER** mode select **ch** i for wind direction retransmission and **ch2** for wind speed. In **RrEh** mode **ch0** is the arithmetic sum. **ch0** should not be selected for any mode other than **RrEh**.

4.17 Second analog output option low value

Display:	LEC- CP5
Range:	Any display value
Default Value:	0

See $\ensuremath{\textit{FEC}}$ and function 4.14 for description of operation.

4.18 Second analog output option high value

Display: **FEC**⁻ **Ch2**

Range: Any display value

Default Value: **1000**

See FEC^- function 4.15 for description of operation.

4.19 Analog output 2 channel

Display:r EC2Range:c h0 to c h8Default Value:c h0

Seen only when analog retransmission option fitted. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted for wiring details and link settings. Analog output 2 channel. Select from **ch0** to **ch8**. In **DAER** mode select **ch** i for wind direction retransmission and **ch2** for wind speed. In **RrEh** mode **ch0** is the arithmetic sum. **ch0** should not be selected for any mode other than **RrEh**.

4.20 Display rounding

Display:	drnd
Range:	t to 5000
Default Value:	1

Displays and sets the display rounding value. This value may be set to 1 - 5000 displayed units. Display rounding is useful for reducing the instrument resolution without loss of accuracy in applications where it is undesirable to display to a fine tolerance. To set the display rounding value go to the **drnd** function and use the **\Delta** or **\Box** push buttons to set the required value then press **\Box** to accept this selection.

Example:

If set to **10** the display values will change in multiples of 10 only i.e. display moves from **10** to **20** to **30** etc.

4.21 Decimal point

Display:	dCPE
Range:	0 , 0 . ! etc.
Default Value:	0

Displays and sets the decimal point. By pressing the \square or \square pushbutton at the *dCPE* function the decimal point position may be set. The display will indicate as follows: \square (no decimal point), \square (1 decimal place), \square (2 decimal places), \square (3 decimal places) and \square (0 decimal place) with more than 4 digits. Note if the decimal point is altered the display will need to be recalibrated and alarm etc. settings checked.

4.22 Digital filter

Display:	FLEr
Range:	0 to 8
Default Value:	2

Displays and sets the digital filter value. Digital filtering uses a weighted average method of determining the display value and is used for reducing display value variation due to short term interference. The digital filter range is selectable from **D** to **B**, where **D** = none and **B** = most filtering. Use \square or \square at the *FLLr* function to alter the filter level if required. Note that the higher the filter setting the longer the display may take to reach its final value when the input is changed, similarly the relay operation and any output options will be slowed down when the filter setting is increased. To set the digital filter value go to the *FLLr* function and use the \square or \square push buttons to set the required value then press \square to accept this selection.

4.23 Units to be used for **DAER** mode

Display:	SPEd Uni E
Range:	5, 5PH, hPH or hoot
Default Value:	ā5

Applicable to **AFER** mode only. Select from the following choices: **AF** (metres/sec), **AFH** (miles/hour), **AFH** (kilometers/hour) or **back** (knots).

4.24 Default display for **DAER** mode

Display:	dFLE di SP
Range:	d, r, SPEd or SERN
Default Value:	SCAN

Applicable to nee R mode only. Select from the following choices: **d**, **r** (wind direction), **SPEd** (wind speed) or **SCR** (automatically toggles display between direction and speed at the rate set by the **SCR** SECS function). For example if this function is set to **d**, **r** then the operator will

need to push the \square or \square button to display speed, the display will then automatically revert back to direction after approximately 4 minutes.

4.25 Number of seconds between scans

Display:	SCAN SECS
Range:	0 to 255
Default Value:	0

Seen only when **CodE** function is set to **SCRN**, **CS** or **NAER**. Selects the number of seconds between channel scans or between wind speed and direction if **CodE** function is set to **NAER**. The scan period can be set from 0 to 255 seconds. If set to 0 the display will not automatically scroll between channels and the \square or \square button must be used to change the channel displayed. Note the display will not automatically scan if it is in **CRL** mode.

4.26 Baud rate for optional serial communications

 Display:
 bRUd FREE

 Range:
 300.500.1200.2400.4800.9600.19.2 or **38.4**

 Default Value:
 9600

Select from **300.600**. **i200.2400.4800.9600**. **i9.2** or **38.4** baud. This must be set to match the baud rate selected at the sending device.

4.27 Parity for serial input

Display:	Prty
Range:	NONE , EUEN or Odd
Default Value:	NONE

4.28 Data type

Display:	98F8
Range:	8.6, E or 7.6, E
Default Value:	8.6, E

Displays and selects the input data type. Select either **8.b**, **b** for 8 data bits plus 1 stop bit or **7.b**, **b** for 7 data bits plus 1 stop bit. This must be set to match the number of data bits of the sending device.

4.29 Input type

 Display:
 Imple

 Range:
 F232, F422, F485 or I 20

 Default Value:
 F232

Select input type used RS232, RS422, RS485 or serial 20mA current loop. Choices appear as: **F232**, **F422**, **F485** or **; 20**. The hardware for the input type is factory configured and changing this function does not change the input type but it is important that this function matches the hardware setup.

4.30 Data type for display

Display:	CodE
Range:	dI SP, ASCI , UAL, AFEH, A.LUS, PEA, SCAN, NAEA or CS
Default Value:	di SP

One of eight different display modes can be selected in this function, namely **di SP**, **RSCi**, **URL**, **RFEH**, **A.BJS**, **PER**, **SCRD**, **DAER** or **CS**. Note: see the separate Addendum booklet for details of arithmetic mode **RFEH** and Wind speed/direction **DAER** operation. The **PER** option is a special purpose function and is not described to this manual. See also the "Examples" section at the end of this chapter. Note that if the mode is altered it is necessary to switch the instrument off then on again to reset to the new mode.

• **d**, **5P** mode

With **d**: **5P** selected (image mode) the display expects to see an input in raw data format from another instrument. This mode is generally only used when the display is connected to an instrument from the same manufacturer. This mode is not used with any other source. The data format expected is: <ESC>Incccc

Where: <ESC> is 27 Dec or 1B Hex I is the ASCII character "I" n is the number of image characters to follow cccc are the image characters in Hex. format

• **85**[; mode

RSC: selects ASCII type input data, the input data will then be displayed without modification (see also **RLPH** function as this can also affect what is displayed). Displays of characters in **RLPH** mode are left justified. Any leading zeroes received will be visible in this mode e.g. data received such as 00873 will be displayed as **DOB73**.

• URL mode

With **URL** selected (numeric or value mode) the incoming characters will not be displayed unless they are numeric characters or a negative sign "-", the characters will be read until a terminating character (see **tchr**) is found. In circumstances, e.g. when terminating characters are not sent by the transmitting device, the instrument can be programmed to look for a constant transmitted character which occurs before to the required display values rather than at the end of the string. In this instance the **SCH** : character can be used and the display told to display a number of characters after this character (see **R.Chr** function). Once the **Echr** or **SCH** i character is found the numeric value will be updated and displayed. If a non numeric character is found then the conversion will cease at that point. Note that ASCII control characters 00 Decimal (Null) to 31 Decimal (Unit Separator) will be ignored if they are seen as part of the string and will not cause the conversion to cease when encountered, they will however not be ignored if used as a start character (**SCH** i, **2** or **3**) or the terminating character set at the **Echr** function. The numeric value is filtered after conversion the **FLEr** setting determines the level of filtering. Note: In **URL** mode any leading zeroes transmitted will be ignored e.g. data received such as -00345 will be displayed as **- 345**.

• **PER** mode

Not applicable to this instruction manual. Do not use this mode.

• **5CA** Π mode

With **SCAR** selected the instrument can be made to scan and display in turn values from up to 8 other devices or channels from the same manufacturer. To operate in scan mode select the number of channels to scan at the **SCAR CH** function then select the automatic scanning period at the **SCAR SECS** function (the scanning period sets the time for the display automatic scrolling, note that the \square or \square button can also be used to manually scroll between channels) then set the address for each channel at the **Ch 1Rddr**, **Ch2Rddr** etc. functions. The address choices are **P 1**, **P2**, **P3**, **P4**, **P5**, **P6**, **P1**, **P8**, **5 1**, **52**, **53**, **54**, **55**, **56**, **57** or **58**. **R !** to **R8** and **E !** to **E8** are also choices but are only for use in polling channels 1 to 8 of a model TP488 scanning monitor. The letters **P** and **5** refer to the primary (**P**) or secondary (**5**) display values from the transmitting instrument e.g. the primary display value of a conductivity instrument will be the conductivity value on the display whilst the secondary display value would be the solution temperature. The number refers to the address of the instrument. For example if **Ch 1**, **Rddr** function has **P3** selected then the primary display value from the instrument with address 3 will be requested as the channel 1 input.

• ភ.**๒**۵5 mode

With **ā.bu5** selected the display will accept a modbus RTU input. An address (1 to 255) must be selected at the **ā.bu5 Rdd** function to correspond to the address selected at the host device. The instrument accepts modbus command 6 "preset single register" and command 16 "preset multiple registers". The command 6 or 16 information sent can be used to preset four registers, these are:

Register 0 Decimal point position

Register 1 Input taken as an unsigned 16 bit number (0 to 65535)

Register 2 Input taken as a signed 16 bit number (-32767 to 32767)

Register 3 Signed 32 bit number high order 16 bits

Register 4 Signed 32 bit number low order 16 bits

Registers 3 and 4 are used together to form a 32 bit number. The display will be updated when the low order register is set.

• **NAER** mode

With **DAER** selected the instrument must be connected to model WS-MMW-005 solid state wind speed and direction sensor or similar NMEA output sensor. See "Wind Speed and Direction NMEA mode" chapter for wiring details and communications setup requirements.

• **[5** mode

In **CS** mode up to 8 values can be sent in comma separated form. The number of values to

be displayed is set at the **SCRN CH** function. The \square or \square buttons can be used to view these values or the display can be set to scan between values automatically via the **SCRN SECS** function. An indicator will be displayed just prior to the values e.g. **CH2** to indicate which value will appear next. The format required for this mode is:

<value1>,<value2>,....<value8><CR>

Where: $\langle CR \rangle$ is the carriage return character.

The **CS** mode can be used with the TP488 scanning monitor and other multi output monitors when the other units **DPut** function is set to **Cont**.

4.31 Alarm relay 1 operation mode

Display:R : OPEFRange:: NPE, E.out or bothDefault Value:: NPE

Relay 1 operation mode - relay 1 can be made to operate from the input value (e.g. at the **R !Lo** or **R !H**, value, applicable when **CodE** is set to **URL** or **A.buS** only) or when the display blanks due to the timeout value being exceeded (timeout value set at the **dS.to** function). If set to **both** the relay will operate from the display value or if communications fails.

4.32 Alarm relay 2 operation mode

Display:	R2 OPEr
Range:	I NPE, E.OUE or both
Default Value:	I NPE

Relay 2 operation mode - relay 2 can be made to operate from the input value (e.g. at the **R iLo** or **R iH**, value, applicable when **LodE** is set to **URL** or **Ā.buS** only) or when the display blanks due to the timeout value being exceeded (timeout value set at the **dS.to** function). If set to **both** the relay will operate from the display value or if communications fails. Note that this function is only available for the first 2 relays fitted.

4.33 Display timeout

Display:	d5.to
Range:	0 to 9999
Default Value:	10

This function allows the user to set a timeout value for a valid display. Valid times are **D** to **9999** seconds, a setting of **D** disables the timeout. If a new data stream is not received before the timeout value is reached then the display will be blanked.

4.34 Data string timeout

Display:	t.out	
Range:	D.D to	10.0
Default Value:	1.0	

This function allows the user to set a timeout value for the data stream. Valid times are **0.0** to **10.0** seconds, a setting of **0.0** disables the timeout. The timeout will cause the current data stream to be ignored if the time gap between characters in the stream exceeds the tout value. This function helps to prevent false displays when the data stream is interrupted.

4.35 Fast RS485

Display:	F856 - 485
Range:	on or OFF
Default Value:	OFF

This function should be set to **an** only when communicating via RS485 with old style RM4 units i.e. RM4 units with 4 digit displays and 6805 processors. This function is used to address timing problems when communicating with these version instruments.

4.36 Digital output option mode

Display:	d90P
Range:	bcd, b.55L, b, a or b, a2
Default Value:	p1 2

Seen only with the 16 bit digital output option. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted. Selections available are: **b**, **a** (signed binary) i.e. -32767 to 32767, **b**, **a** (unsigned binary) i.e. 0 to 65535, **b.5**CL (scaled binary, see **d**, **S**₋ and **d**, **S**⁻ below), **b**cd (binary coded decimal) i.e. up to four BCD numbers.

4.37 Digital output option polarity

Display:	d9.0P
Range:	R; o or RH,
Default Value:	Ri o

Seen only with the 16 bit digital output option. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted. Selections available are: **R**: • (active low i.e. logic 1 = 0V output, logic 0 = +V output) or **RH**. (active high i.e. logic 1 = +V output, logic 0 = 0V output).

Display:	bed Strt
Range:	0 , 1 or 2
Default Value:	٥

Seen only with the 16 bit digital output option. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted. This function affects BCD mode only and determines the number of digits to skip when outputting from the display. As the output is 16 bit it can output up to 4 BCD numbers. Select from **O** to number of digits minus 4. e.g. for a 6 digit display you may select **O** to **Z**, if **Z** is selected then the four left most digits will be output, if set to **O** then the four right most digits will be output.

4.39 Digital output option low value

Display:d, 9_Range:Any display valueDefault Value:0

Seen only with the 16 bit digital output option. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted. Accepts any valid display value. Determines the low scaling point for the **b.SCL** mode and has no effect on other modes. See example which follows in 4.40.

4.40 Digital output option high value

Display:	d, 9 ⁻
Range:	Any display value
Default Value:	1000

Seen only with the 16 bit digital output option. Refer to the separate "PM4 Panel Meter Optional Output Addendum" booklet supplied when this option is fitted. Determines the high scaling point for the **b.SCL** mode and has no effect on other modes.

Example:

If d, g_{-} is set to G and d, g^{-} is set to $55535(2^{16}-1)$ then the retransmission will not be scaled i.e. a display of 2 will cause a retransmission of 2. If d, g^{-} is now changed to $32767(2^{15}-1)$ then a display of 2 will cause a retransmission of 4 (note: rounding may occur on retransmission).

4.41 Digital output option channel

Display:	dout CHAN
Range:	chO to chB
Default Value:	ch0

Channel for digital output - applicable only in **AFEH**, **SERR**, **CS** or **MAER** mode. This function

allows selection of the input channel to be retransmitted on the digital output. If multiple input channels are not being used then leave this function set to chO. For nee R mode channel is the wind direction and channel 2 is the wind speed.

4.42 **P** button function

Display:	P.but
Range:	NONE.HLo.HI Lo.EAFE or 26FO
Default Value:	ποπε

P button function - The following applies only when the **COdE** function is set to **URL**. The **P** button (5, 6 or 8 digit LED models only) may be set to operate some of the remote input functions. With the tare and zero functions, to prevent accidental operation, the **P** button must be held pressed for 2-3 seconds before the display will tare or zero, momentary operation of the tare function will cause the gross value to be displayed, preceded by the message **9705**. If both the remote input and **P** button function are operated simultaneously the **P** button will override the remote input. The functions below are as described in the **F**. **P** function below. Functions available are: **NORE**. **H**, **LO.H**, **LO.H**, **LO.H**

4.43 Remote input function

Display:	r,i np
Range:	NONE, P.HLd., d.HLd., H., Lo., H. Lo., ERFE, 2EFO, SP.Rc., No.Rc.
	or dull
Default Value:	ΠΟΛΕ

Remote input function - When these remote input terminals are short circuited, via a switch, relay, keyswitch etc. the instrument will perform the selected remote input function. A message will flash to indicate which function has been selected when the remote input pins are short circuited. The remote input functions are as follows:

- **NORE** no remote function required i.e. activating the remote input has no effect.
- **P.HL d** peak hold. The display will show the peak value (highest positive value) only whilst the remote input terminals are short circuited i.e. the display value can rise but not fall whilst the input terminals are short circuited. The message **P.HL d** will appear briefly every 8 seconds whilst the input terminals are short circuited to indicate that the peak hold function is active.
- **d.HLd** display hold. The display value will be held whilst the remote input terminals are short circuited. The message **d.HLd** will appear briefly every 8 seconds whilst the input terminals are short circuited to indicate that the display hold function is active.
- Peak memory. The peak value stored in memory will be displayed if the remote input terminals are short circuited, if the short circuit is momentary then the display will return to normal measurement after 20 seconds. If the short circuit is held for 2 to 3 seconds or the power is removed from the instrument then the memory will be reset.

- Lo valley memory. The minimum value stored in memory will be displayed. Otherwise operates in the same manner as the **H**, function described above.
- H. Lo toggle between H. and Lo displays. This function allows the remote input to be used to toggle between peak and valley memory displays. The first operation of the remote input will cause the peak memory value to be displayed, the next operation will give a valley memory display. PH. or PLo will flash before each display to give an indication of display type.
- ERFE display tare. Short circuiting the remote input pins momentarily will allow toggling between nett and gross values (shown as **NELL** and **GFDS**). If the remote input is short circuited for approx. 2 seconds the display will be tared and will show zero. The tare will be lost if power is removed.
- **2EFO** display zero. Zeroes the display in same manner as the tare function except that the zero is not lost when power is removed and the display will zero as soon as the remote input is shorted. When the **2EFO** operation is used the gross value cannot be recalled and the input at the time of the **2EFO** operation will become the new zero point.
- **5P.Rc** setpoint access only. This blocks access to any functions except the alarm setpoint functions unless the remote input pins are short circuited or entry is made via **CRL** mode or if the **RCC5** function is set to **RLL**.
- **No.Rc** no access. This blocks access to all functions unless the remote input pins are short circuited or entry is made via **CRL** mode or if the **RECS** function is set to **RLL**.
- **dull** display brightness control. The remote input can be used to change the display brightness. When this mode is selected the display brightness can be switched, via the remote input terminals, between the brightness level set at the **br St** function and the brightness level set at the **dull** function.

4.44 Access mode

Display:RECSRange:OFF.ERSY.NONE or RLLDefault Value:OFF

Access mode - the access mode function **RCCS** has four possible settings namely **DFF**.**ERSY**. **NONE** and **RLL**. If set to **DFF** the mode function has no effect on alarm relay operation. If set to **ERSY** the "easy alarm access" mode will be activated. Refer to "Easy alarm relay adjustment access facility" page 17. If set to **NONE** there will be no access to any functions via **FUNE** mode, entry via **CRL** mode must be made to gain access to alarm and calibration functions. If set to **RLL** then access to all functions, including calibration functions, can be gained via **FUNE** mode.

4.45 Setpoint access mode

Display:	SPRC
Range:	R I.R I-2 etc.
Default Value:	R (

Setpoint access - seen only if more than 1 relay fitted. Sets the access via **FURE** mode and "easy

alarm access" mode to the alarm relay setpoints. The following choices are available:

R : - Allows setpoint access to alarm 1 only.

R:-**2** - Allows setpoint access to alarms 1 and 2 only.

R I - **3** - Allows setpoint access to alarms 1, 2 and 3 etc. up to the maximum number of relays fitted.

The remote input function $(f, ; \Pi P)$ must be set to **SP.RC** for this function to operate. Note: Only the setpoints which have been given a value will be accessible e.g. if **R** i**H**, is set to **DFF** then there will be no access to the **R** i**H**, function when **SPRC** is used.

4.46 Alarm relay 1 operation channel

Display:	R (
Range:	ch0 to ch8
Default Value:	ch0

Alarm relay 1 allocation - applicable only to Rrth, NAER, SCAN and CS modes. Allows relay 1 to be allocated to one channel. Settings available are ch0, ch1, ch2, ch3, ch4, ch5, ch6, ch7 or ch8. In NAER mode ch1 represents wind direction and ch2 represents wind speed. In Rrth mode ch0 represents the arithmetic result. ch0 should not be selected for any other mode.

4.47 Alarm relays 2 to 7 operation channel

Display:	ra to r 7
Range:	c h0 to ch8
Default Value:	ch0

Alarm relay allocation for relays 2, 3, 5, 5, 6 and 7 - applicable only to **Reth**, **DAER**, **SERD** and **ES** modes. See section 4.46

4.48 Number of active channels for **Rrth** mode

Display:	ЯЕРН СН
Range:	; to 8
Default Value:	ч

Displays and selects the number of active input channels used in the arithmetic operation. The instrument will automatically poll the number of channels selected.

4.49 Channel 1 address

Display:Ch ! RddrRange:P ! to PB or 5 ! to 58 or E ! to EBDefault Value:P !

Seen only when **CodE** function is set to **SCRD** or **Rrth**. The instruments connected to the display for scanning purposes must be of the same manufacture this instrument. These units allow a primary and in some cases secondary values to be sent. Refer to the separate manuals supplied when this option is fitted to see if secondary values are available for that instrument. The primary value is the main display value for that instrument e.g. For a conductivity instrument the conductivity would be the primary value and the temperature the secondary. Addresses available are **P** : to **PB** (to poll for primary values), **S** : to **SB** (to poll for secondary values) and **E** : to **EB** (to poll a channel of model TP488 scanning monitor). The numerical value refers to the channel number of a TP488 scanning monitor, for other instruments the numerical value is the address which is set at the **Rddr** function of the instrument being polled. For example if **Ch2 Rddr** is set to **P2** then the value will be returned will be the primary display value from the instrument whose **Rddr** function is set to **2**.

4.50 Channel 2 address

Display:	Ch2 Rddr
Range:	P ! to $P8$ or 5 ! to 58 or E ! to $E8$
Default Value:	P (

Seen only when **CodE** function is set to **SCRD** or **RrEh**. Scan address for channel 2, see function 4.49 for further information.

4.51 Channel 3 address

Display:	[h] Addr
Range:	P : to PB or S : to SB or E : to EB
Default Value:	P (

Seen only when **CodE** function is set to **SCRD** or **RrEh**. Scan address for channel 3, see function 4.49 for further information.

4.52 Channel 4 address

Display:	[h4 Addr
Range:	P ; to PB or S ; to SB or E ; to EB
Default Value:	P (

Seen only when **CodE** function is set to **SCRN** or **RrEh**. Scan address for channel 4, see function 4.49 for further information.

4.53 Channel 5 address

Display:	EhS Addr
Range:	P ; to $P8$ or 5 ; to 58 or E ; to $E8$
Default Value:	P (

Seen only when **CodE** function is set to **SCRD** or **RrEh**. Scan address for channel 5, see function 4.49 for further information.

4.54 Channel 6 address

Display:	Ch6 Addr
Range:	P ; to PB or 5 ; to 58 or E ; to EB
Default Value:	P (

Seen only when **CodE** function is set to **SCRD** or **RrEh**. Scan address for channel 6, see function 4.49 for further information.

4.55 Channel 7 address

Display:	[h] Addr
Range:	P ; to PB or 5 ; to 58 or E ; to $E8$
Default Value:	P (

Seen only when **CodE** function is set to **SCRD** or **RrEh**. Scan address for channel 7, see function 4.49 for further information.

4.56 Channel 8 address

Display:	[h8 Rddr
Range:	P ; to $P8$ or 5 ; to 58 or E ; to $E8$
Default Value:	P :

Seen only when **CodE** function is set to **SCRN** or **RrEh**. Scan address for channel 8, see function 4.49 for further information.

4.57 Channel 1 decimal point

Display: C	Ь	1	d[PE
-------------------	---	---	------

Range: **0**, **0**. **!** etc.

Default Value: **2**

Seen only in $\mathcal{LodE} = \mathsf{Rrth}$ mode. Displays and sets the decimal point for input channel 1. By pressing the \square or \square pushbuttons the decimal point position may be set. The display will indicate as follows: \square (no decimal point), \square . \mathcal{I} (1 decimal place), \square . \square (2 decimal places) etc.

Display:	CH2 dCPE
Range:	D , D . I etc.
Default Value:	0

Seen only in CodE = Rrth mode. Displays and sets the decimal point for input channel 2. See function 4.57 for further details.

4.59 Channel 3 decimal point

3 dCPE

Range: 0, **0**. **!** etc.

Default Value: **2**

Seen only in CodE = Rrth mode. Displays and sets the decimal point for input channel 3. See function 4.57 for further details.

4.60 Channel 4 decimal point

Display: ChydCPt

Range: **0**, **0**. **!** etc.

Default Value:

Seen only in CodE = Rreh mode. Displays and sets the decimal point for input channel 2. See function 4.57 for further details.

4.61 Channel 5 decimal point

Display:	CHS dCPE
Range:	D , D . ! etc.
Default Value:	0

Seen only in CodE = Rreh mode. Displays and sets the decimal point for input channel 5. See function 4.57 for further details.

4.62 Channel 6 decimal point

Display:	CH6 dCPE
----------	----------

Range: 0, **0**. **!** etc.

Default Value: **2**

Seen only in CodE = Rreh mode. Displays and sets the decimal point for input channel 6. See function 4.57 for further details.

Display:	CHJ dCPE
Range:	D , D. ! etc.
Default Value:	0

Seen only in CodE = Rreh mode. Displays and sets the decimal point for input channel 7. See function 4.57 for further details.

4.64 Channel 8 decimal point

Range: 0, **0**. **!** etc.

Default Value: **2**

Seen only in CodE = Rrth mode. Displays and sets the decimal point for input channel 8. See function 4.57 for further details.

4.65 Channel 1 **ER** ; value for arithmetic formula

Display:	ER (
Range:	-32727 to 32767
Default Value:	1

Seen only in **SEt OPEr** = **Rrth** mode. Displays and sets the **ER** ! value to be used in the arithmetic formula. If the number of display digits allows a range from **-32727** to **32767** is available for this function. This value is used together with the input value for channel 1, the **Eb** ! and **EC** ! to produce the a value to be used in the formula below:

$$\frac{\mathsf{ER} \texttt{!}^* (\mathrm{Ch1} + \mathsf{Eb} \texttt{!})}{\mathsf{EC} \texttt{!}} \left\{ \begin{array}{c} \mathsf{R}\mathsf{d}\mathsf{d} \\ \mathsf{S}\mathsf{u}\mathsf{b} \\ \mathsf{Pr}\circ\mathsf{d} \\ \mathsf{d},\mathsf{U} \\ \mathsf{h}\mathsf{!} \mathsf{g}\mathsf{h} \\ \mathsf{L}\mathsf{o} \\ \mathsf{S}\mathsf{v}\circ\mathsf{E} \\ \mathsf{C}\mathsf{o}\mathsf{S} \\ \mathsf{C},\mathsf{S}\mathsf{U}\mathsf{b} \end{array} \right\} \frac{\mathsf{ER2}^* (\mathrm{Ch2} + \mathsf{E}\mathsf{b}\mathsf{2})}{\mathsf{E}\mathsf{C}\mathsf{2}} \left\{ \begin{array}{c} \mathsf{R}\mathsf{d}\mathsf{d} \\ \mathsf{S}\mathsf{u}\mathsf{b} \\ \mathsf{Pr}\circ\mathsf{d} \\ \mathsf{d},\mathsf{U} \\ \mathsf{h}\mathsf{!} \mathsf{g}\mathsf{h} \\ \mathsf{L}\mathsf{o} \\ \mathsf{S}\mathsf{v}\circ\mathsf{n}\mathsf{E} \\ \mathsf{C}\mathsf{o}\mathsf{S} \\ \mathsf{C},\mathsf{S}\mathsf{U}\mathsf{b} \end{array} \right\} \frac{\mathsf{ER3}^* (\mathrm{Ch3} + \mathsf{E}\mathsf{b}\mathsf{3})}{\mathsf{E}\mathsf{C}\mathsf{3}} \\ \frac{\mathsf{ER3}^* (\mathrm{Ch3} + \mathsf{E}\mathsf{b}\mathsf{3})}{\mathsf{E}\mathsf{C}\mathsf{3}} \\ \mathsf{C}\mathsf{o}\mathsf{S} \\ \mathsf{C},\mathsf{S}\mathsf{U}\mathsf{b} \end{array} \right\}$$

Note: \mathbf{R} and \mathbf{C} are whole numbers, **b** has the same decimal place setting as its associated channel.

Display:	ЕЬ (
Range:	-32727 to 32767
Default Value:	0

Seen only in **SEL DPE**r =**R**r**L**h mode. Displays and sets the **Eb**t value to be used in the arithmetic formula. See function 4.65 for further details.

4.67 Channel 2 **EC2** value for arithmetic formula

Display:	523
Range:	-32727 to 32767
Default Value:	1

Seen only in **SEt OPE** $r = \mathbf{Rr}\mathbf{Lh}$ mode. Displays and sets the **EC2** value to be used in the arithmetic formula. See function 4.65 for further details.

4.68 Channel 2 **ER2** value for arithmetic formula

Display:	E82
Range:	-32727 to 32767
Default Value:	1

Seen only in **SEt OPE** r =**Rrth** mode. Displays and sets the **ER2** value to be used in the arithmetic formula. See function 4.65 for further details.

4.69 Channel 2 **Eb2** value for arithmetic formula

Display:	ЕР5
Range:	-32727 to 32767
Default Value:	0

Seen only in **SEt OPE** r =**Rrth** mode. Displays and sets the **Eb2** value to be used in the arithmetic formula. See function 4.65 for further details.

4.70 Channel 2 **EC2** value for arithmetic formula

Display:	523
Range:	-32727 to 32767
Default Value:	1

Seen only in **SEE OPE** $r = \mathbf{RrEh}$ mode. Displays and sets the **EC2** value to be used in the arithmetic formula. See function 4.65 for further details.

Display:	ER3
Range:	-32727 to 32767
Default Value:	1

Seen only in **SEL OPE** r =**A**r**L**h mode. Displays and sets the **ER3** value to be used in the arithmetic formula. See function 4.65 for further details.

4.72 Channel 3 **Eb 3** value for arithmetic formula

Display:	863
Range:	-32727 to 32767
Default Value:	0

Seen only in **SEt OPE** $r = \mathbf{Rr}\mathbf{Lh}$ mode. Displays and sets the **Eb3** value to be used in the arithmetic formula. See function 4.65 for further details.

4.73 Channel 3 **EC 3** value for arithmetic formula

Display:	863
Range:	-32727 to 32767
Default Value:	1

Seen only in **SEt OPE** r =**Rrth** mode. Displays and sets the **EC3** value to be used in the arithmetic formula. See function 4.65 for further details.

4.74 Channel 4 **ERY** value for arithmetic formula

Display:	ERY
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rrehmode. Displays and sets the ERY value to be used in the arithmetic formula. See function 4.65 for further details.

4.75 Channel 4 **Eb** value for arithmetic formula

Display:	ЕЬЧ
Range:	-32727 to 32767
Default Value:	0

Seen only in CodE = Rrehmode. Displays and sets the EbY value to be used in the arithmetic formula. See function 4.65 for further details.

Display:	ECY
Range:	- 32 72 7 to 32 76 7
Default Value:	1

Seen only in CodE = Rreh mode. Displays and sets the ECY value to be used in the arithmetic formula. See function 4.65 for further details.

4.77 Channel 5 **ERS** value for arithmetic formula

Display:	ERS
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rrehmode. Displays and sets the **ERS** value to be used in the arithmetic formula. See function 4.65 for further details.

4.78 Channel 5 **Eb5** value for arithmetic formula

Display:	865
Range:	-32727 to 32767
Default Value:	0

Seen only in CodE = Rrehmode. Displays and sets the EbS value to be used in the arithmetic formula. See function 4.65 for further details.

4.79 Channel 5 **EC5** value for arithmetic formula

Display:	865
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rrehmode. Displays and sets the ECS value to be used in the arithmetic formula. See function 4.65 for further details.

4.80 Channel 6 **ER5** value for arithmetic formula

Display:	ER6
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rrth mode. Displays and sets the **ER5** value to be used in the arithmetic formula. See function 4.65 for further details.

Display: **E65** Range: -32727 to 32767 Default Value: **0**

Seen only in CodE = Rrehmode. Displays and sets the **Eb5** value to be used in the arithmetic formula. See function 4.65 for further details.

4.82 Channel 6 **EC5** value for arithmetic formula

Display:	828
Range:	- 32727 to 32767
Default Value:	1

Seen only in CodE = Rrehmode. Displays and sets the ECE value to be used in the arithmetic formula. See function 4.65 for further details.

4.83 Channel 7 **ER7** value for arithmetic formula

Display:	ERJ
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rreh mode. Displays and sets the ER7 value to be used in the arithmetic formula. See function 4.65 for further details.

4.84 Channel 7 **Eb** 7 value for arithmetic formula

Display:	ЕЬ7
Range:	-32727 to 32767
Default Value:	0

Seen only in CodE = Rrehmode. Displays and sets the Eb7 value to be used in the arithmetic formula. See function 4.65 for further details.

4.85 Channel 7 **EC** 7 value for arithmetic formula

Display:	ECT
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rrehmode. Displays and sets the EC7 value to be used in the arithmetic formula. See function 4.65 for further details.

Display:	ER8
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rreh mode. Displays and sets the **ERB** value to be used in the arithmetic formula. See function 4.65 for further details.

4.87 Channel 8 **Eb8** value for arithmetic formula

Display:	868
Range:	-32727 to 32767
Default Value:	0

Seen only in CodE = Rrehmode. Displays and sets the **EbB** value to be used in the arithmetic formula. See function 4.65 for further details.

4.88 Channel 8 **ECB** value for arithmetic formula

Display:	823
Range:	-32727 to 32767
Default Value:	1

Seen only in CodE = Rrehmode. Displays and sets the ECB value to be used in the arithmetic formula. See function 4.65 for further details.

4.89 Channel 1 polarity

Display:	Eh I
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 1. If set to **bOLH** then the display will be able to indicate both positive and negative values. If set to **POS** the display will allow only positive values with any values below zero being rounded to zero. If set to **RES** then the display will allow only negative values with any value above zero being rounded to zero.

4.90 Channel 2 polarity

Display:	CH2
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 2. See function 4.89 for further information.

4.91 Channel 3 polarity

Display:	[h]
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 3. See function 4.89 for further information.

4.92 Channel 4 polarity

Display:	E h4
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 4. See function 4.89 for further information.

4.93 Channel 5 polarity

Display:	Ch5
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 5. See function 4.89 for further information.

4.94 Channel 6 polarity

Display:	Ch6
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 6. See function 4.89 for further information.

4.95 Channel 7 polarity

Display:	[h]
Range:	both, POS or RES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 7. See function 4.89 for further information.

4.96 Channel 8 polarity

Display:	Ch8
Range:	both, POS or NES
Default Value:	both

Displays and sets the polarity selection for the display of the engineering value for channel 8. See function 4.89 for further information.

4.97 Arithmetic operation between channels 1 and 2

Display:	OP (
Range:	Rdd, Sub, Prod, d. U, H. Sh, Lo, SI NE, COS or C.SUb
Default Value:	Rdd

Displays the arithmetic operation to be undertaken between the formula for channels 1 and 2. See also function 4.65 which illustrates the formula. Choices are:

- **Rdd** channel 1 formula plus channel 2 formula
- 5ub channel 1 formula minus channel 2 formula
- Prod channel 1 formula times channel 2 formula
- **d**, **u** channel 1 formula divided by channel 2 formula
- H, Sh highest of channel 1 formula or channel 2 formula
- Lo lowest of channel 1 formula or channel 2 formula
- 5. $\neg E$ channel 1 formula times the sine of the angle represented by channel 2 formula
- **COS** channel 1 formula times the cosine of the angle represented by channel 2 formula
- **C.5Ub** channel 1 formula clock time input minus channel 2 formula clock time. Note: **C.5Ub** is meant to be used when connecting to two clocks with compatible serial outputs.

Display:OP2Range:Rdd, Sub, Prod, d. U, H. Sh, Lo, SI NE or COSDefault Value:Rdd

Displays the arithmetic operation to be undertaken between the channel 3 formula and the previous result. See also function 4.65 which illustrates the formula. Choices are:

- **Rdd** mathematical result of **DP** : plus channel 3 formula
- **5** $_{\text{D}\text{b}}$ mathematical result of **DP** : minus channel 3 formula
- Prod mathematical result of **OP** : times channel 3 formula
- d, U mathematical result of DP ! divided by channel 3 formula
- H, Sh highest of mathematical result of \mathbf{OP} ! or channel 3 formula
- Lo lowest of mathematical result of ${\it GP}$; or channel 3 formula
- 5, $\neg E$ mathematical result of **DP** : times the sine of the angle represented by channel 3 formula
- **COS** mathematical result of **OP** ! times the cosine of the angle represented by channel 3 formula

4.99 Arithmetic operation between channel 4 and previous operation

Display:	OP 3
Range:	Rdd, Sub, Prod, d. U, H. Sh, Lo, SI NE or COS
Default Value:	Rdd

Displays the arithmetic operation to be undertaken between the channel 4 formula and the previous result. See also function 4.65 which illustrates the formula. Choices are:

- **Rdd** mathematical result of **OP** ! and **OP2** plus channel 4 formula
- Sub mathematical result of **OP !** and **OP2** minus channel 4 formula
- Prod mathematical result of **OP** : and **OP2** times channel 4 formula
- **d**, **U** mathematical result of \mathbf{OP} **:** and $\mathbf{OP2}$ divided by channel 4 formula
- H, Sh highest of mathematical result of OP ; and OP2 or channel 4 formula
- Lo lowest of mathematical result of OP and OP2 or channel 4 formula
- 5, $\neg E$ mathematical result of **OP** : and **OP2** times the sine of the angle represented by channel 4 formula

• $\ensuremath{\mathsf{CO5}}$ - mathematical result of $\ensuremath{\mathsf{OP2}}$ i and $\ensuremath{\mathsf{OP2}}$ times the cosine of the angle represented by channel 4 formula

4.100 Arithmetic operation between channel 5 and previous operation

Display:	ОРЧ
Range:	Rdd, Sub, Prod, d. U, H. 9h, Lo, SI NE or COS
Default Value:	Rdd

Displays the arithmetic operation to be undertaken between the channel 5 formula and the previous result. See also function 4.65 which illustrates the formula. Choices are:

- *Rdd* mathematical result of *OP* **!** and *OP2* and *OP3* plus channel 5 formula
- 5ub mathematical result of **OP** ! and **OP2** and **OP3** minus channel 5 formula
- Prod mathematical result of **DP ;** and **DP2** and **DP3** times channel 5 formula
- **d**, **U** mathematical result of OP **!** and OP2 and OP3 divided by channel 5 formula
- H. Sh highest of mathematical result of OP ! and OP2 and OP3 or channel 5 formula
- Lo lowest of mathematical result of OP ; and OP2 and OP3 or channel 5 formula
- 5, $\neg E$ mathematical result of **OP** *i* and **OP2** and **OP3** times the sine of the angle represented by channel 5 formula
- **CO5** mathematical result of **OP** i and **OP2** and **OP3** times the cosine of the angle represented by channel 5 formula

4.101 Arithmetic operation between channel 6 and previous operation

Display:	OPS
Range:	Rdd, Sub, Prod, d. U, H. Sh, Lo, SI NE or COS
Default Value:	Rdd

Displays the arithmetic operation to be undertaken between the channel 6 formula and the previous result. See also function 4.65 which illustrates the formula. Choices are:

- **Add** mathematical result of **OP !** and **OP2** and **OP3** and **OP4** plus channel 6 formula
- Sub mathematical result of OP ; and OP2 and OP3 and OP4 minus channel 6 formula
- Prod mathematical result of OP ; and OP2 and OP3 and OP4 times channel 6 formula
- d, U mathematical result of OP ; and OP2 and OP3 and OP4 divided by channel 6 formula
- H, Sh highest of mathematical result of **DP** ! and **DP2** and **DP3** and **DP4** or channel 6 formula

- Lo lowest of mathematical result of **OP !** and **OP2** and **OP3** and **OP4** or channel 6 formula
- 5, $\neg E$ mathematical result of **OP** ! and **OP2** and **OP3** and **OP4** times the sine of the angle represented by channel 6 formula
- **CO5** mathematical result of **OP** : and **OP2** and **OP3** and **OP4** times the cosine of the angle represented by channel 6 formula

4.102 Arithmetic operation between channel 7 and previous operation

Display:	0P6
Range:	Rdd, Sub, Prod, d. U, H. 9h, Lo, SI NE or COS
Default Value:	Rdd

Displays the arithmetic operation to be undertaken between the channel 7 formula and the previous result. See also function 4.65 which illustrates the formula. Choices are:

- **Add** mathematical result of **OP !** and **OP2** and **OP3** and **OP4** and **OP5** plus channel 7 formula
- **5.6** mathematical result of **OP :** and **OP2** and **OP3** and **OP4** and **OP5** minus channel 7 formula
- **Prod** mathematical result of **OP !** and **OP2** and **OP3** and **OP4** and **OP5** times channel 7 formula
- d, U mathematical result of **OP** ! and **OP2** and **OP3** and **OP3** and **OP3** divided by channel 7 formula
- H, Sh highest of mathematical result of OP ! and $\mathsf{OP2}$ and $\mathsf{OP3}$ and $\mathsf{OP4}$ and $\mathsf{OP5}$ or channel 7 formula
- Lo lowest of mathematical result of OP ! and $\mathsf{OP2}$ and $\mathsf{OP3}$ and $\mathsf{OP4}$ and $\mathsf{OP5}$ or channel 7 formula
- 5, $\neg E$ mathematical result of **DP** *i* and **DP2** and **DP3** and **DP4** and **DP5** times the sine of the angle represented by channel 7 formula
- **CO5** mathematical result of **OP** : and **OP2** and **OP3** and **OP4** and **OP5** times the cosine of the angle represented by channel 7 formula

4.103 Arithmetic operation between channel 8 and previous operation

Display:	CP J
Range:	Rdd, Sub, Prod, d. U, H. 9h, Lo, SI NE or COS
Default Value:	Rdd

Displays the arithmetic operation to be undertaken between the channel 8 formula and the previous result. See also function 4.65 which illustrates the formula. Choices are:

- **Rdd** mathematical result of **OP !** and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** plus channel 8 formula
- **5.6** mathematical result of **OP :** and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** minus channel 8 formula
- **Prod** mathematical result of **OP !** and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** times channel 8 formula
- d, U mathematical result of **DP** ; and **DP2** and **DP3** and **DP4** and **DP5** and **DP5** divided by channel 8 formula
- H, 9h highest of mathematical result of **OP** ; and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** or channel 8 formula
- Lo lowest of mathematical result of **OP** *i* and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** or channel 8 formula
- 5, $\neg E$ mathematical result of **OP** *i* and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** times the sine of the angle represented by channel 8 formula
- **CO5** mathematical result of **OP !** and **OP2** and **OP3** and **OP4** and **OP5** and **OP5** times the cosine of the angle represented by channel 8 formula

4.104 Clear zero

Display:	CL+ 2670
Range:	n/a
Default Value:	n/a

Seen only when \mathcal{LodE} function = \mathcal{URL} or \mathcal{RFEH} . Allows any zero operations performed via the remote input or \mathbf{P} button to be cleared. Pressing the $\mathbf{\Delta}$ and $\mathbf{\nabla}$ buttons simultaneously will clear the zero offset, the message \mathcal{LLed} will be seen, confirming the zero clearing operation is completed. The instrument will then return to displaying the value of the string sent.

4.105 Baud rate for serial retransmission

Display:	r.tra bRUd	
Range:	300, 600, <i>1</i> 200, 2400, 4800, 98	500, <i>1</i> 9.2 or 38.4
Default Value:	9600	

Seen only when serial retransmission is fitted. Refer to the separate "Optional Output Addendum" booklet supplied when this option is fitted. The baud rate should be chosen to match that of the device to which this instrument is connected.

4.106 Parity for serial retransmission

Display:	F.trn Prty
Range:	NONE, EUEN or Odd
Default Value:	ΠΟΠΕ

Seen only when serial retransmission is fitted. Refer to the separate "Optional Output Addendum" booklet supplied when this option is fitted. The parity should be chosen to match that of the device to which this instrument is connected.

4.107 Output mode for serial retransmission

Display:	F.tro O.Put
Range:	NONE, dl SP, Cont, POLL, Cont, A.buS or A.buS
Default Value:	NONE

Seen only when serial retransmission is fitted. Refer to the separate "Optional Output Addendum" booklet supplied when this option is fitted. Selects the required output mode for retransmission. Note: if the **CodE** function is set to **RSC**: then only the **d**: **SP** output selection can be used.

4.108 Address for serial retransmission

Display:	F.trn Addr
Range:	0 to 3 (
Default Value:	0

Seen only when serial retransmission is fitted. Refer to the separate "Optional Output Addendum" booklet supplied when this option is fitted. Selects the required address for retransmission when in **POLL** output mode using RS485 retransmission. Addressing allows several units to operate on the same RS485 interface. The host computer or PLC may poll each unit in turn, supplying the appropriate address. The unit addresses range from 0 to 31 (DEC) but is offset by 32 (DEC) to avoid clashing with special function characters such as $\langle STX \rangle$ and $\langle CR \rangle$. For example 32 (DEC) (space in ASCII) is address 0 and 42 (DEC) (* in ASCII) is address 10.

5 Arithmetic function examples

Example 1: To get an average of channels 1, 2, 3 and 4 each input is added together and divided by 4:

Program: **EA i** = **i**, **Eb i** = **D**, **EC i** = **4**, **EA 2** = **i**, **Eb 2** = **D**, **EC 2** = **4**, **EA 3** = **i**, **Eb 3** = **D**, **EC 3** = **4**, **EA 4** = **i**, **Eb 4** = **D**, **EC 4** = **4**, **DP i** = **Ad**, **DP 3** = **Ad**, **1** * (Ch1+0) / 4 Add $\frac{1 * (Ch2+0)}{4} Add \frac{1 * (Ch3+0)}{4} Add \frac{1 * (Ch4+0)}{4}$

Example 2: Three inputs are present. The display is to indicate the highest of the 3 inputs. Channel 1 input is to be multiplied 2/3.

Program: ER I = 2, Eb I = 0, EC I = 3, ER2 = 1, Eb2 = 0, EC2 = 1, ER3 = 1, Eb3 = 0, EC3 = 1, OP I = H, 9H, OP 2 = H, 9H $\frac{2*(Ch1+0)}{3} HIGH \frac{1*(Ch2+0)}{1} HIGH \frac{1*(Ch3+0)}{1}$

Example 3: To multiply the figure displayed on channel 1 by the sine of the angle of the figure displayed on channel 2. The second channel would normally be scaled from 0 to 360 when either the sine or cosine is being used, however numbers outside this range are acceptable.

Program: ERI = 1, EBI = 0, ECI = 1, ER2 = 1, EB2 = 0, EC2 = 1, OPI = SINE $\frac{1 * (Ch1 + 0)}{1} SINE \frac{1 * (Ch2 + 0)}{1}$

6 Function table - Wind Speed and Direction mode

Note: the order in which the functions appear on the display may not be exactly as shown below. The availability and order of functions is determined by choice of function settings and options fitted.

Display	Function	Function Range Default		Your record	Ref/Page
AxLo	Low setpoint value for designated alarm relay x	Any display value or DFF	· · ·		4.1 / 18
Я x н,	High setpoint value for designated alarm relay x	Any display value or DFF	OFF	See 6.1	4.2 / 18
\mathbf{R}_{x} Hy	Hysteresis value for the designated alarm relay x .	0 to 9999	10	See 6.1	4.3 / 19
Axtt	Trip time delay for the designated alarm relay x .	0 to 9999	0 to 9999 0		4.4 / 20
Axrt	Reset time delay for the designated alarm relay x .	0 to 9999	0	See 6.1	4.5 / 20
Яхп.о or Яхп.с	Alarm relay x action to normally open (de-energised) or normally closed (energised)	Rxn.e or Rxn.c	Axn.o	See 6.1	4.6 / 20
A x 5P or A x E 1 etc.	Relay operation independent setpoint or trailing setpoint (* Optional)	RxSP or RxE fetc.	Rx5P	See 6.1	4.7 / 21
br 9t	Display brightness level	1 to 15	15		4.8 / 21
dull	Display remote brightness switching	0 to 15	1		4.9 / 21

Functions in this first table are available in **FUNC** or **CRL** mode

(***Optional**)—this function will only be accessible if the relevant option is fitted

Display	Function	Range	Default	Your	Ref/Page
				record	
68r_	Bargraph low value	Any display value	0		4.10 / 22
68r ⁻	Bargraph high value	Any display value	1000		4.11 / 22
68- £9РЕ	Bargraph type for instruments with bargraph display	bЯr, 5.dot, d.dot, C.bЯГ or r.dot	68r		4.12 / 22

Functions in this second table are available only in **CRL** mode or if **REES** is set to **RLL**

(*Optional)—this function will only be accessible if the relevant option is fitted

68- Снял	Bargraph channel	0 to 8	0	4.13 / 23
LEC-	Analog output option low display value (* Optional)	Any display value	٥	4.14 / 24
LEC_	Analog output option high display value (* Optional)	Any display value	1000	4.15 / 24
rEC	Analog output 1 channel (* Optional)	ch0 to ch8	ch0	4.16 / 24
LEC - 243	Second analog output option low display value (* Optional)	Any display value	0	4.17 / 25
ГЕС ⁻ СҺ2	Second analog output option high display value (* Optional)	Any display value	1000	4.18 / 25
~E[2	Analog output 2 channel (* Optional)	c h0 to ch8	ch0	4.19 / 25
SPEd Uni E	Units to be used for DAER mode	āS, āPH, hPH or haet	ō5	4.23 / 26
dFLE d; SP	Default display for TAER mode	dır, SPEd or SERN	SCAN	4.24 / 26
SCAN SECS	Number of seconds between scans	0 to 255	0	4.25 / 27
FRFE LUFE	Baud rate for serial communications	300.600. 1200.2400. 4800.9600. 19.2 or 38.4	9600	4.26 / 27
Prty	Parity for serial input	NONE .EUEN or Odd	ΠΟΠΕ	4.27 / 27
98F8	Data type	8.ь, ± or 7.ь, ±	8.6, E	4.28 / 27
I NPE	Input type	Г232, Г422, Г485 or I 20	r 232	4.29 / 28
CodE			4.30 / 28	
Я (ОРЕГ	Alarm relay 1 operation mode	I NPL, L.out or both	I NPE	4.31 / 30
R2 OPEC	Alarm relay 2 operation mode	I NPL, L.out or both	I NPE	4.32 / 30
d5.to	Display timeout	0 to 9999	10	4.33 / 30
t.out	Data string timeout	0.0 to 10.0	1.0	4.34 / 31

 $({}^{*}\mathbf{Optional}) - \!\!\!\!- \!\!\!\!$ this function will only be accessible if the relevant option is fitted

F85£ ~485	Fast RS485	on or OFF	OFF	4.35 / 31
490P	Digital output option mode (* Optional)	bcd, b.5CL, b, a or b, a2	p. v5	4.36 / 31
d9.0P	Digital output option polarity (* Optional)	Rioor RH, Rio		4.37 / 31
bcd Strt	Digital output option BCD start position (* Optional)			4.38 / 32
d, 9_	Digital output option low value (* Optional)	Any display value	0	4.39 / 32
d, 9 ⁻	Digital output option high value (* Optional)	Any display value	1000	4.40 / 32
dout Chrn	Digital output option channel (* Optional)	chO to chB	ch0	4.41 / 32
Р.Боб	P button function	NONE.H Lo.HILo. ERFE or 2EFO	NONE	4.42 / 33
Г.) ПР	Remote input (external input) one function	NDNE, P.HLd, d.HLd,H,, Lo,H,Lo, ERFE,2EFD, SP.Rc,No.Rc or duLL	NONE	4.43 / 33
RCCS	Access mode	OFF.ERSY. NONE or ALL	OFF	4.44 / 34
SPRC	Setpoint access mode (* Optional)	A 1, A 1-2 etc.	R (4.45 / 34
R :	Alarm relay 1 operation channel	chO to ch8	c hO	4.46 / 35
ez to רא	Alarm relays 2 to 7 operation channel (*Optional)	ch0 to ch8	ch0	4.47 / 35
F.Eco BRUd	Baud rate for serial retransmission (* Optional)	300, 600, 1200, 2400, 4800, 9600, 19.2 or 38.4	9600	4.105 / 50
F.tra Prty	Parity for serial retransmission (* Optional)	NONE, EUEN or Odd	NONE	4.106 / 51
r.tro O.Put	Output mode for serial retransmission (* Optional)	NDNE, dl SP, Cont, POLL, Cont, ñ.buS or R .buS	NONE	4.107 / 51

 $({}^{*}\mathbf{Optional}) - \!\!\!\!- \!\!\!\!$ this function will only be accessible if the relevant option is fitted

F.trn	Address for serial retransmission	0 to 3 (٥	4.108 / 51
Rddr	(* Optional $)$			

(*Optional)—this function will only be accessible if the relevant option is fitted

6.1 Relay table

Record your relay settings in the table below

Display	Relay 1	Relay 2	Relay 3	Relay 4	Relay 5	Relay 6	Relay 7
AxLo							
Я <i>х</i> н,							
Яхну							
Axtt							
Axrt							
Axn.o or Axn.c							
A x SP or A x E ! etc.	n/a						
8:							
82							
83							
84							
85							
86							
87							

7 Wind speed and direction NMEA mode

This chapter deals specifically with the NMEA (National Marine Elecronics Association) mode of operation. When used in this mode the display must be connected to a wind sensor with NMEA output such as model WS-MMW-005 solid state wind speed and direction sensor and the displays **CodE** function must be set to **DAER**.

Communication settings require the baud rate (**bRUd** $\Gamma R \models E$ function) to be set to **4800** with no parity (**P** $\Gamma \models \exists$ function) and 8 data bits (**dR** $\models R$ function).

The display can be set to show wind speed, wind direction or to toggle (using \square or \square button) or automatically alternate the display between wind speed and direction. Analog retransmission output options can be selected to transmit wind direction ($\square h$!) or wind speed ($\square h$ 2) at the \square E function Similarly $\square h$! or $\square h$ can be selected for the alarm relays at the $\square l$, $\square 2$ etc. functions and for the bargraph using function $\square h$ can be selected for the alarm relays at the $\square l$, $\square 2$ etc. functions and for the bargraph using function $\square h$ can be selected for the alarm relays at the $\square l$, $\square 2$ etc. functions and for the bargraph using function $\square h$ can be selected for the alarm relays at the number of number

Other settings allow the wind speed units and default display to be selected. See Chapter 6, page 53 for details of setup functions for the NMEA wind speed and direction mode.

See section 2.8, page 7 for wiring details of the WS-MMW-005 NMEA wind sensor.